1,449 research outputs found

    Period Changes in Ultra-compact Double White Dwarfs

    Get PDF
    In recent years there has been much interest in the nature of two stars, V407 Vul and RXJ0806+1527, which are widely thought to be binary white dwarfs of very short orbital period, 570 and 321 seconds respectively. As such they should be strong sources of gravitational waves and possible ancestors of the accreting AM CVn stars. Monitoring at X-ray and optical wavelengths has established that the period of each star is decreasing, at rates compatible with that expected from gravitational radiation. This has been taken to support the ``unipolar inductor'' model in which the white dwarfs are detached and the X-rays produced by the dissipation of magnetically-induced electric currents. In this paper we show that this interpretation is incorrect because it ignores associated torques which transfer angular momentum between the spin of the magnetic white dwarf and the orbit. We show that this torque is 10^5 times larger than the GR term in the case of V407 Vul, and 10 times larger for RXJ0806+1527. For V407 Vul, the unipolar inductor model can only survive if the white dwarf spins 100 times faster than the orbit. Since this could only come about through accretion, the validity of the unipolar inductor appears questionable for this star. We also consider whether accretion models can fit the observed spin-up, concluding that they can, provided that a mechanism exists for driving the mass transfer rate away from its equilibrium value.Comment: 6 pages, 1 figure, accepted for publication in MNRA

    Formation of undermassive single white dwarfs and the influence of planets on late stellar evolution

    Get PDF
    We propose a scenario to form low-mass, single, slow rotating white dwarfs from a solar-like star accompanied by a massive planet, or a brown dwarf, in a relatively close orbit (e.g. HD 89707). Such white dwarfs were recently found by Maxted & Marsh (1998). When the solar-like star ascends the giant branch it captures the planet and the subsequent spiral-in phase expels the envelope of the giant leaving a low-mass helium white dwarf remnant. In case the planet evaporizes, or fills its own Roche-lobe, the outcome is a single undermassive white dwarf. The observed distribution of planetary systems supports the applicability of this scenario.Comment: 4 pages, accepted for publication in A&A letter

    Ultra-compact binaries: relevance and role of Utrecht

    Get PDF
    We present a short overview of the formation and evolution of ultra-compact binaries. They are relevant to a surprisingly large number of astrophysical phenomena (binary interactions, mass transfer stability, explosive phenomena such as type Ia supernovae and gravitational waves).Comment: To appear in proceedings of "370 years of astronomy in Utrecht", Noordwijkerhout, The Netherlands, April 2-5, 2012 (ASP Conference Series

    Detection of the radial velocity curve of the B5-A0 supergiant companion star of Cir X-1?

    Get PDF
    In this Paper we report on phase resolved I-band optical spectroscopic and photometric observations of CirX-1 obtained with the Very Large Telescope. The spectra are dominated by Paschen absorption lines at nearly all orbital phases except near phase zero (coinciding with the X-ray dip) when the absorption lines are filled-in by broad Paschen emission lines. The radial velocity curve of the absorption lines corresponds to an eccentric orbit (e=0.45) whose period and time of periastron passage are consistent with the period and phase predicted by the most recent X-ray dip ephemeris. We found that the I-band magnitude decreases from 17.6 to ~16.8 near phase 0.9-1.0, this brightening coincides in phase with the X-ray dip. Even though it is likely that the absorption line spectrum is associated with the companion star of CirX-1, we cannot exclude the possibility that the spectrum originates in the accretion disc. However, if the spectrum belongs to the companion star, it must be a supergiant of spectral type B5-A0. If we assume that the compact object does not move through the companion star at periastron, the companion star mass is constrained to ~<10 Msun for a 1.4 Msun neutron star, whereas the inclination has to be ~> 13.7 degrees. Alternatively, the measured absorption lines and their radial velocity curve can be associated with the accretion disc surrounding a 1.4 Msun neutron star and its motion around the centre of mass. An absorption line spectrum from an accretion disc is typically found when our line-of-sight passes through the accretion disc rim implying a high inclination. However, from radio observations it was found that the angle between the line-of-sight and the jet axis is smaller than 5 degrees implying that the jet ploughs through the accretion disc in this scenario.Comment: 8 pages, 4 figures, 3 tables, accepted by MNRA

    The influence of short term variations in AM CVn systems on LISA measurements

    Get PDF
    We study the effect of short term variations of the evolution of AM CVn systems on their gravitational wave emissions and in particular LISA observations. We model the systems according to their equilibrium mass-transfer evolution as driven by gravitational wave emission and tidal interaction, and determine their reaction to a sudden perturbation of the system. This is inspired by the suggestion to explain the orbital period evolution of the ultra-compact binary systems V407 Vul and RX-J0806+1527 by non-equilibrium mass transfer. The characteristics of the emitted gravitational wave signal are deduced from a Taylor expansion of a Newtonian quadrupolar emission model, and the changes in signal structure as visible to the LISA mission are determined. We show that short term variations can significantly change the higher order terms in the expansion, and thus lead to spurious (non) detection of frequency derivatives. This may hamper the estimation of the parameters of the system, in particular their masses and distances. However, we find that overall detection is still secured as signals still can be described by general templates. We conclude that a better modelling of the effects of short term variations is needed to prepare the community for astrophysical evaluations of real gravitational wave data of AM CVn systems.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    Optical spectroscopy of (candidate) ultra-compact X-ray binaries: constraints on the composition of the donor stars

    Get PDF
    We present optical spectroscopy of several (candidate) ultra-compact X-ray binaries (UCXBs) obtained with the ESO VLT and Gemini-North telescopes. In only one of five observed UCXB candidates did we find evidence for H in its spectrum (4U 1556-60). For XB 1905+00 the optical counterpart is not detected. For the known UCXBs 4U 1626-67 and XB 1916-05 we find spectra consistent with a C/O and a He/N accretion disc respectively, the latter is the first optical spectrum of a He-rich donor in an UCXB. Interestingly, the C/O spectrum of 4U 1626-67 shows both similarities as well as marked differences from the optical C/O spectrum of 4U 0614+09. We obtained phase resolved spectroscopy of 4U 0614+09 and the 44 min transient XTE J0929-314. In neither object were we able to detect clear orbital periodicities, highlighting the difficulties of period determinations in UCXBs. We reanalysed the spectra of XTE J0929-314 that were taken close to the peak of its 2003 X-ray outburst and do not confirm the detection of Halpha emission as was claimed in the literature. The peak spectra do show strong C or N emission around 4640A, as has also been detected in other UCXBs. We discuss the implications of our findings for our understanding of the formation of UCXBs and the Galactic population of UCXBs. At the moment all studied systems are consistent with having white dwarf donors, the majority being C/O rich.Comment: Accepted for publication in MNRA

    LISA astronomy of double white dwarf binary systems

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will provide the largest observational sample of (interacting) double white dwarf binaries, whose evolution is driven by radiation reaction and other effects, such as tides and mass transfer. We show that, depending on the actual physical parameters of a source, LISA will be able to provide very different quality of information: for some systems LISA can test unambiguously the physical processes driving the binary evolution, for others it can simply detect a binary without allowing us to untangle the source parameters and therefore shed light on the physics at work. We also highlight that simultaneous surveys with GAIA and/or optical telescopes that are and will become available can radically improve the quality of the information that can be obtained.Comment: accepted for publication in ApJLetter

    The population of AM CVn stars from the Sloan Digital Sky Survey

    Get PDF
    The AM Canum Venaticorum stars are rare interacting white dwarf binaries, whose formation and evolution are still poorly known. The Sloan Digital Sky Survey provides, for the first time, a sample of 6 AM CVn stars (out of a total population of 18) that is sufficiently homogeneous that we can start to study the population in some detail. We use the Sloan sample to `calibrate' theoretical population synthesis models for the space density of AM CVn stars. We consider optimistic and pessimistic models for different theoretical formation channels, which yield predictions for the local space density that are more than two orders of magnitude apart. When calibrated with the observations, all models give a local space density of 1-3x10^{-6} pc^{-3}, which is lower than expected. We discuss the implications for the formation of AM CVn stars, and conclude that at least one of the dominant formation channels (the double-degenerate channel) has to be suppressed relative to the optimistic models. In the framework of the current models this suggests that the mass transfer between white dwarfs usually cannot be stabilized. We furthermore discuss evolutionary effects that have so far not been considered in population synthesis models, but which could be of influence for the observed population. We finish by remarking that, with our lower space density, the expected number of Galactic AM CVn stars resolvable by gravitational-wave detectors like LISA should be lowered from current estimates, to about 1,000 for a mission duration of one year.Comment: Accepted to MNRA
    • …
    corecore